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Agenda

● Announcements:
○ Midterm quiz this Thursday; check the previous lecture slide for more information
○ Small update: the first a few slides today will be covered in quiz

● Today’s topics:
○ Network feature
○ Simple Natural Language Processing concepts and techniques
○ Attention mechanism and Transformer



More about Neural Networks (Again)

● Shallow network vs. deep network
○ Recall that in the homework, for each epoch, you pass all training data before updating the 

gradient.
○ Imagine doing so on a deep network, what problems may arise?

■ Insufficient memory (dependent on implementation)
■ Extremely long training time
■ Overfitting

○ Therefore, usually we use batch method: put training samples into small batches, and then for 
each batch, randomly choose one sample for training



Even More about Neural Networks

● We know that the first layer in a network is 
the input while the last layer is the output.

● But what about each hidden layer?
○ More specifically, what do their outputs mean?

input
output?



Even More about Neural Networks

● The input layer encodes raw information.
● The output layer encodes label information.
● Each hidden layer encodes some 

unreadable information.
● The last hidden layer encodes the 

aggregated information.
○ Its outputs often called features. They are like the 

network’s encryptions of data.
○ Other hidden layers encode information too, but 

are much less commonly used.
● The output layer classifies based on these 

features, hence it’s also called the 
“classifier layer”.

input
output?



Even More about Neural Networks

● A network model without the classifier layer outputs features. People often 
refer to is as “feature extractor” or “featurizer”.

● When using a model that has been pre-trained on some other dataset, we 
usually

○ remove the classifier layer and replace it with a fresh one (with random weights) that matches 
our task labels, and then

○ fine-tune (mostly the new classifier layer) on our dataset that is usually much smaller.
● This procedure is called transfer learning.
● A “good” model should produce “good” features.



Disclaimer

The rest of today’s contents won’t appear in your midterm, and probably won’t 
appear in your final.



Spam vs Not Spam

● This is a real message I received last year
● Is it a spam?
● Without verifying the number and without knowing 

Margrit’s texting style, how can you tell?



Spam vs Not Spam

● Given a collection of spam messages and a collection of non-spam ones, how 
do we build a model to classify them?

● The most straightforward method is to find words that commonly appear in the 
spam messages.

● Then, for each message, we can accumulate the “bad word” frequencies, 
compute the ratio between the sum of bad frequencies and the sum of all 
words, and apply a threshold.

● Problems with this approach?
○ How to determine “bad words?”

● The idea makes sense, so let’s make it work, via probabilities.



Probability Review

● P(A): probability of event A happening
● P(A, B): probability of event A and event B happening
● P(A | B): probability of event A happening, given that B happens
● P(A, B) = P(A | B) P(B)
● If A and B are independent events, then P(A, B) = P(A) P(B)

○ So, in this case, P(A | B) = P(A)
● If A and B are conditionally independent given event C, then P(A, B | C) = 

P(A | C) P(B | C)
● P(A) = P(A | B) P(B) + P(A | C) P(C) + …

○ As long the sum of the second terms is one
● P(A | B) P(B) = P(B | A) P(A)



S(pam) vs H(am)

● Trivia: in network security, “ham” = “non-spam”
● We use S to denote the event that a given message is spam and H if not
● We use wi to denote the event that some word “wi” is found in the message
● Then, given all words in a message W = (w1, w2, …), we would like to know 

the quantity P(S | W)



S(pam) vs H(am)

● By Bayes rule and marginal probability

● If we assume that the words W = (w1, w2, …) are conditionally independent



S(pam) vs H(am)

● Putting them together

● Given a (training) dataset, all quantities on the RHS can be obtained by 
counting

● This is the Naive Bayes method
○ It is naive due to the conditional independence assumption

● Some improvements can be made
○ Add 1s to avoid zeros in the products
○ Take log to avoid floating point errors in long products



Text Representation

● We just saw one idea to represent text in numbers: counting
○ There are other methods that do not depend on task (unlike in NB).
○ For example, one can build a count vector for each piece of input text such that entry 

represents one word in a large vocabulary.
● The modern way is called tokenization, which includes three steps:

○ Break text into words (originally what tokenization is only about)
○ Change words into their base forms in necessary (stemming)
○ Find the ID of each word according to some vocabulary and use the IDs to represent the 

words
● Tokenization outputs a vector for each piece of input text, where each entry is 

an ID
○ Since IDs are categorical, it is common to apply one-hot encoding before using them.



Count Vector vs. ID Vector

● Which is better? Count vector or ID vector?
○ What information does a count vector loses while an ID vector preserves?

● If we simply want to classify the type of text (spam vs ham), using counts may 
be sufficient.

● But for more complex tasks, the order of words is essential to understand the 
text meanings.

○ In particular, words in different positions of a sentence can be related and is many cases the 
relation is key for understanding.



Time Series Input

● The order of the words matters
● The simplest way to reflect the order is to handle the the words one at at time 

under the order
● This turns a sentence into time series data
● To handle such data, researchers invented a special network called 

Recurrent Neural Network (RNN)



RNN Overview

At a high level, RNN takes one input 
word (or rather, the token vector) at a 
time.

Classification is performed when all 
words in a sentence are processed.

RNN

This is a spam

classifier

cache
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the model
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RNN Forward Propagation

If the current word is the first in a sentence, 
the model

1. takes the token as input,
2. obtains the “feature vector” from the 

last hidden layer, and
3. stores it (without necessarily sending it 

to the classifier layer).
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RNN Forward Propagation

If the current word is the last in the 
sentence, the model

1. takes the token as input and combines 
it with the most recently stored feature 
vector,

2. obtains the new “feature vector” from 
the last hidden layer,

3. and sends it to the classifier layer.

RNN

This is a spam

classifier

cache



RNN Backward Propagation

One way to imagine how RNN works for a single token is that the token is sent to 
a sequence of functions.

Therefore, the backward propagation regarding that token is just computing a long 
chain of derivatives.

The number of functions is determined by the length of the sentence.

Such backward propagation is done for each token and each propagation yields a 
gradient.

The accumulated gradient is used to update the network.



RNN Backward Propagation

The disadvantage of RNN lies in the backward propagation: the longer the 
sentence, the longer the chained derivatives (which is a long product).

To address this, researchers made the network a lot more confusing (at least by 
the first glance) by introducing a “gate” mechanism. The “gate” can control if the 
previous token’s outputs may go to the next token’s pass.

The most famous modified variant is called long short-term memory networks, 
or LSTM.



Text Embedding

● In Natural Language Processing community, a text embedding is a 
numerical vector representation of the text.

● This vector can be any vector: the count vector, the ID vector, etc..
● Note that the feature vector from RNN’s last hidden layer is also embedding.
● In fact, it is very common to use the model’s feature vectors as embeddings.

○ This is because embeddings from a network carry more context and semantic information than 
just counts and IDs.



Attention - History

RNN/LSTM, despite of their issues, was the best approach for NLP.

That changed in 2014, when the concept of attention was proposed.

Three years later, the network structure called Transformer was built based on 
attention mechanism, and has been the base for all state-of-the-art models up to 
today.

For example, ChatGPT(ransformer).



Attention - Motivation

Consider the following news sentence from CNN:

“The legislative road ahead is tough, despite the bipartisan majority in 
committee, but this bill could redefine the business of marijuana.”
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Attention - Motivation

Consider the following news sentence from CNN:

“The legislative road ahead is tough, despite the bipartisan majority in 
committee, but this bill could redefine the business of marijuana.”

If we feed the sentence to an RNN model and obtain the embedding for the word 
“bill,” which carries information of all words before “bill.”

We can also feed the reverse sentence to the same RNN to obtain an embedding 
carrying information of all words after “bill.”

However, is every word equally important in providing context for “bill?”



Attention - Single Target

● Given word embeddings and a 
target word

● Compute the similarities between 
the target word all words

● With the (normalized) similarity 
values as weights, compute the 
weighted sum of all embeddings

● The sum is called context vector, 
which is the new embedding for the 
target word

Embeddings

v1 v2 v3 v4 v5 v6

Context vector



Attention - Self-Attention

Attention is, in fact, just similarity.

By taking the weighted sum, we are introducing context information to the target 
word embedding with more similar words contributing more information.

This is called self-attention. The same mechanism can be applied to different 
inputs.



Self-Attention - Overview

Let V = (v1, v2, …) be a sentence.

● For each vi in V,
○ Compute aj = Similarity(vi, vj) for all vj in V and normalize them
○ Compute context vector vi’ as a weighted sum of all vj in V, with {aj} being the weights



Self-Attention - Overview

Let V = (v1, v2, …) be a sentence.

● For each vi in V,
○ Compute aj = Similarity(vi, vj) for all vj in V and normalize them
○ Compute context vector vi’ as a weighted sum of all vj in V, with {aj} being the weights

Query Key

Value



Self-Attention - Network Version

Recall the forward propagation in matrix form (without bias)

or, if x is a row vector

Multiply a vector with a matrix means projection.

If the matrix corresponds to a network layer, then the projection is trainable (that 
is, can be optimized).

So, to bring the attention into a network, we can project the query, key, and value.



Self-Attention - Overview

Let V = (v1, v2, …) be a sentence.

● For each vi in (VQW),
○ Compute aj = Similarity(vi, vj) for all vj in (VKW) and normalize them
○ Compute context vector vi’ as a weighted sum of all vj in (VVW), with {aj} being the weights



Self-Attention - Overview

Source: Wikipedia

https://en.wikipedia.org/wiki/Attention_(machine_learning)


Multi-Head Attention

Each instance of such attention network is called an attention head.

Usually multiple heads are computed in parallel for better performance.

Multiple parallel heads form a multi-head attention block in a network.

A Transformer model is built based on the attention block.



Transformer

Source: Collider

https://collider.com/new-transformers-animated-movie-ilm-lorenzo-di-bonaventura-comments/


Transformer

Source: Attention Is All You Need

https://arxiv.org/abs/1706.03762


Transformer

Source: Attention Is All You Need

Encoder Decoder

https://arxiv.org/abs/1706.03762


Transformer

● Encoder: text → feature vector
● Decoder: feature vector → text
● The model was originally designed 

for machine translation, hence the 
encoder-decoder structure

● For general purposes, encoder is 
sufficient

Encoder Decoder

Source: Attention Is All You Need

https://arxiv.org/abs/1706.03762


Summary

● Shallow and deep networks are trained differently
● The output vector from the last hidden layer is commonly used as feature 

vector
● Text embedding = numerical vector representation of text

○ It can be built with different means, but most commonly with the feature vector from a network
● RNN/LSTM: processes one word at a time, allows previous information to flow 

into current and future steps
○ It has trouble with long text input

● Attention mechanism uses a weighted combination of context information to 
represent each word

● Transformer is built on top of attention and has been the core of many SOTA 
models in NLP
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